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Abstract 

Proton Radiography 

  

Los Alamos National Laboratory has used high energy protons as a 

probe in flash radiography for a decade. In this time the proton 

radiography project has used 800 MeV protons, provided by the 

LANSCE accelerator facility at LANL, to diagnose over three-hundred 

dynamic experiments in support of national and international weapons 

science and stockpile stewardship programs. Through this effort 

significant experience has been gained in using charged particles as 

direct radiographic probes to diagnose transient systems.  The results 

of this experience will be discussed through the presentation of data 

from experiments recently performed at the LANL pRad. 
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Proton Radiography Primer 

Frank Merrill, LANL 

and the pRad collaboration 
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Proton Interactions 
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Early Proton Radiography 

Marginal Range Radiography 

• Reduce proton beam energy to near 

end of range. 

• Use steep portion of transmission 

curve to enhance sensitivity to areal 

density variations. 

• Coulomb scattering at low energy 

results in poor resolution >1.5 mm. 

• Contrast generated through proton 

absorption. 

Scattering Radiography 

• Edge detection only 

• Limited to thin objects 

• Contrast generated 

through position 

dependent scattering 
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LANL Transmission Radiography (1995) 
188 MeV secondary proton beamline at LANSCE 

Detector Object 
Magnetic Lens 

Image at the detector is 

substantially blurred. 

Magnetic imaging lens preserves 

image with high resolution. 
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Magnetic Imaging Lens 
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Multiple Coulomb Scattering 

C. Amsler et al., Physics Letters B667, 1 (2008) 
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Contrast from Multiple Coulomb Scattering 

Transmission 

Incident Beam After Object After Collimator 
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Nuclear Interactions 

Angular distribution of 800 MeV proton nuclear elastic 

scattering from Iron. 
Simple Approximation for Modeling Proton Radiography 

•Characteristic Nuclear Collision Length: c 

•Approximate that each interaction removes the proton 

from the acceptance of the imaging lens. 

•Measure the collision Length at 800 MeV 

The “true” nuclear interactions are more 

complicated than this simple assumption and these 

interactions are reasonably well understood.  This 

can all be simulated, but it is typically not worth the 

effort for designing small scale experiments. 

x
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cT e
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Transmission Calculation 
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Nuclear removal processes: 

o - scattering angle (radians) 

x - areal density 

Multiple Coulomb Scattering with collimation: 

o - scattering angle (radians) 

x - areal density 

xo - radiation length 

p - momentum (MeV) 

β - relativistic velocity 

Total EstimatedTransmission:  

Good to 5-10% 
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A Useful Table 
Particle Data Group: 

http://pdg.lbl.gov/ 
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Accurate Areal Density Reconstructions 
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Adjust parameters to fit transmission data: 

•c - nuclear collision length 

•Xf – fixed radiation length (windows, beam angular spread) 
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When is an object too thick? 

Areal density contours of 

constant transmission as a 

function of atomic number. 

 

10% is near the lower limit of 

reasonable transmission. 

Al Fe Sn Au U 
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Dynamic Range of 800 MeV Proton Radigraphy 

• 800 MeV proton radiography ranges from 1 g/cm2 up to 70 g/cm2 of iron 
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LANSCE Experimental Areas 

 Lujan Center 
• National security 

research 

• Materials, bio-science, 

and nuclear physics  

• National user facility 

 

 

 WNR 
• National security 

research 

• Nuclear Physics  

• Neutron Irradiation 

 Proton Radiography 
• National security 

research 

• Dynamic Materials 

science, 

• Hydrodynamics 

 Isotope Production Facility 
• Medical radioisotopes 
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Full LANSCE System 
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• Diffuser sets illumination pattern at object. 

• Matching quads establish position-angle correlation 

• CL-0 has a 9.0 mRad collimator 

• CL-1 and CL-2 can independently have 5-20 mrad collimators 

• Lens 0 used for beam monitoring 

• IL-1 has seven single-shot camera systems 

• IL-2 has five single-shot camera systems and a 9-frame framing camera 

• 21 images per dynamic event at up to 21 different times.   
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800 MeV pRad Facility at LANSCE 

Object Location 
Identity Lens Image Locations 

Identity Lens Collimator 
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Temporal Resolution 

Proton Beam 

Pellicle 

12KV gated 

Planar Diode 

Scintillator 

Cooled CCD 

(1600x1600) 

• 19 images at first station 

• 22 images at second station 

• Typically 100 ns exposure times 
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Chromatic Aberration and Resolution 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

M
o

d
u

la
tio

n

Cycles/mm

Station 2

Lens+Camera MTF

Lens+Camera MTF Fit

• 12 inch lens 

• Station 1: 178 m 

• Station 2: 280 m 

• Gaussian blur function. 

• 120 mm field of view 

Identity Lens 
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Radiographic Analysis 

- = 

÷ = 

“Raw” Radiograph Dark Field 

Beam Picture Transmission 
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Bethe-Bloch Energy Loss for 800 MeV Protons 
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C. Amsler et al., Physics Letters B667, 1 (2008) 
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Density Reconstruction 
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Invert to calculate Areal Density Use assumption of 

cylindrical symmetry to 

determine volume 

density (Abel inversion) 
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Multi-Frame Radiographic Movies 
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Resolution of Proton Radiography 

1. Object scattering -  introduced as the protons are scattered while traversing the object.    
2. Chromatic aberrations-  introduced as the protons pass through the magnetic lens imaging system.   
3. Detector blur-  introduced as the proton interacts with the proton-to-light converter and as the light is 

gated and collected with a camera system.  
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Measurements of Object Scattering Blur 
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Correcting Second Order Chromatic Aberrations 
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identical doublets 

Same position-angle 

correlation which forms 

a Fourier plane at the 
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cancels second order 

chromatic terms. 
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Inject beam with position-

angle correlation to form 

Fourier plane at center of 

lens. 

Fourier Plane 
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Chromatic Aberrations 
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Black lines are the initial trajectories of the protons.  

Colored lines are trajectories of protons scattered 

by object. 

Resolution 

Proton Radiography: 

Momentum spread and chromatic length determine the resolution 

 

X-Ray Radiography:  

Spot size  and magnification determine the resolution. 

Δx  - Resolution 

Lc - Chromatic Length 

 - Scattering angle 

p - Momentum 

Off-focus protons by 

lower momentum 
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Chromatic Blur      Limbing 
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Focus on high energy protons 

Resolution proportional to energy offset 

Low 

High 

Low + High 

Limb: To outline in clear sharp detail 

Like phase-contrast radiography: 

• Useful to enhance edges 

• Problem for density reconstruction 
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800 MeV x3 Magnifying Imaging Lens 
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Solid-Solid Phase Transition in Iron 

Dramatic Improvement in Resolution is allowing us to make new measurements like 

this solid-solid phase transition in iron. We are performing experiments with the 

magnifier to study solid-solid phase transitions in cerium this week. 

X3 Magnifying Lens 

Resolution improvement equivalent to an energy increase 

from 800 MeV to 2 GeV (in terms of chromatic blur) 
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Material Strength Experiments 
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Material Strength Experiments 

PTW fit to Hopkinson-Bar data* 
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http://lansce.lanl.gov/pRad/  
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Solid-Solid Phase Transitions in Iron 
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Phys. Rev. Lett. 98 135701 (2007) 
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pRad has been used to study the failure of materials driven 

by point detonated high explosives 

Aluminum Copper 

Tantalum Tin 

A comparison of spall for different materials 

• Experiments were aimed at extending VISAR 

measurements below the leading spall layer.   

• Proton radiographs reveal that the deepest damage 

layers are not well defined. 

• Multiple pRad experiments show that damage 

formation deep within the metal is “statistical” in 

nature and dependent on metal. 
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Complicated Studies of HE Burn Products 

High Explosives 

Line initiators 

¼” Steel PBX-9501 
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Studies of HE Burn Products 

High Explosives 

Line initiators 

¼” Steel PBX-9501 
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Evolution of Spall Damage 

What damage occurs behind the first spall layer? 

• How and where are voids 

formed? 

• How do they coalesce to form 

macroscopic damage? 

• Requires improvements in 

resolution. 

Dynamic Radiograph 

Micrograph 

0.8 cm 

Incipient Spall with Recovery Experiments 
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Few Hertz Radiographic Movies 

• <5 Hz Frame Rate 

• 1000 Frame limit 
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Summary 

• 800 MeV proton radiography continues to provide high 

quality dynamic materials studies for LANL. 

• Gains in resolution have been realized through the 

development of magnifying lens systems. 

• Interest at Los Alamos to build a user community for 

access to 800 MeV proton radiography. 

• We will be looking for user experiments in the 2008 run 

cycle (June-December). 

 


